Phishing is a crime that involves the theft of personal information from users. Individuals, corporations, cloud storage, and government websites are all targets for the phishing websites. Anti-phishing technologies based on hardware are commonly utilised, while software-based options are preferred due to cost and operational considerations. Current phishing detection systems have no solution for problems like zero-day phishing assaults. To address these issues, a three-phase attack detection system called the Phishing Attack Detector based on Web Crawler was suggested, which uses a recurrent neural network to precisely detect phishing incidents. Based on the classification of phishing and non-phishing pages, it covers the input features Web traffic, web content, and Uniform Resource Locator (URL). Keywords: Attack detection, Recurrent Neural Network, Deep Learning.