Biomass in the form of crop residues represents a significant energy source in regions whose development is based on agricultural production. Among many possibilities of utilizing biomass for energy generation, combustion is the most common. With the aim of improving and optimizing the combustion process of crop residues, an experimental rig for straw combustion in a fixed bed was constructed. This paper gives a brief review of working characteristics of the experimental rig, as well as the results for three different measuring regimes, with the purpose to investigate the effect of air-flow rate on the wheat straw combustion in a fixed bed. For all three regimes analysed in this paper bulk density of the bed was the same, 60 kg/m 3 , combustion air was without preheating and air-flow rates were: 1152, 1872, and 2124 kg/m 2 h. The effect of air-flow rate on the ignition rate, burning rate, temperature profile of the bed and flue gas composition were analysed. It was concluded that in the regime with the lowest air-flow rate progress of combustion had two clearly conspicuous stages: the ignition propagation stage and the char and unburned material oxidation stage. At the highest air-flow rate the entire combustion occurred mostly in a single stage, due to increased air supply oxidized the char, remaining above the ignition front, simultaneously with the reactions of volatiles. Despite that, the optimal combustion process, the highest value of ignition rate, burning rate, and bed temperature was achieved with air-flow rate of 1872 kg/m 2 h.