In many operational processes, a suitable combination of participating elements has a huge impact throughout the entire process. In the real environment, however, many combinations show less than expected results in the initial stage. In consideration of the many subjective and objective factors such as equipment, time, capital, materials, and so forth, it seems that the aforementioned combinations cannot be used to re-configure. It is important that these initial unsatisfactory combinations can gradually approach some equilibrium states or results through some rolling adjustment processes. In order to improve the above problem, this study attempts to use a game-theoretic dynamic procedure to establish a mechanism that can be dynamically modified under relative symmetry at any time during operational processes. Under such a dynamic procedure, an undesirable combination of participating elements can gradually approach a useful combination.