In Saudi Arabia, the carbon footprint and energy use that results from using concrete in construction is a major negative contributor to the environmental effects of building materials. Likewise, the impact of annual cooling and heating energy demands has an equally prominent role to play. These demands need to be assessed and benchmarked in order that reduction targets can be set. Saudi Arabia presents its own unique context and local conditions, which creates a challenge when utilizing generic frameworks for assessing the environmental impact of domestic buildings. In meeting this aim, this paper presents a resilience and environmental sustainability assessment framework (RESAF) developed specifically for domestic buildings in Saudi Arabia. RESAF helps designers/builders to minimize the carbon footprint of the building fabric and reduce in-use energy demands of domestic buildings in Saudi Arabia. This paper shows how this framework can be used to reduce, by approximately 23%, the carbon impact from construction materials, primarily by substituting a portion of cement for pulverized fly ash (PFA) or ground granulated blast furnace slag (GGBS). A reduction of 19% in annual cooling and heating energy demand were additionally achieved throughout the building’s life, simply by increasing insulation and using triple-glazed windows. The importance of passing these alternative solutions through the resilience filter is highlighted, not least questioning whether they are really fit-for-purpose.