Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The microbiome of the Sinai Desert farming system plays an important role in the adaptive strategy of growing crops in a harsh, poly-extreme, desert environment. However, the diversity and function of microbial communities under this unfavorable moisture and nutritional conditions have not yet been investigated. Based on culturomic and metagenomic methods, we analyzed the microbial diversity and function of a total of fourteen rhizosphere soil samples (collected from twelve plants in four farms of the Sinai desert), which may provide a valuable and meaningful guidance for the design of microbial inoculants. Results The results revealed a wide range of microbial taxa, including a high proportion of novel undescribed lineages. The composition of the rhizosphere microbial communities differed according to the sampling sites, despite similarities or differences in floristics. Whereas, the functional features of rhizosphere microbiomes were significantly similar in different sampling sites, although the microbial communities and the plant hosts themselves were different. Importantly, microorganisms involved in ecosystem functions are different between the sampling sites, for example nitrogen fixation was prevalent in all sample sites while microorganisms responsible for this process were different. Conclusion Here, we provide the first characterization of microbial communities and functions of rhizosphere soil from the Sinai desert farming systems and highlight its unexpectedly high diversity. This study provides evidence that the key microorganisms involved in ecosystem functions are different between sampling sites with different environment conditions, emphasizing the importance of the functional microbiomes of rhizosphere microbial communities. Furthermore, we suggest that microbial inoculants to be used in future agricultural production should select microorganisms that can be involved in plant-microorganism interactions and are already adapted to a similar environmental setting.
Background The microbiome of the Sinai Desert farming system plays an important role in the adaptive strategy of growing crops in a harsh, poly-extreme, desert environment. However, the diversity and function of microbial communities under this unfavorable moisture and nutritional conditions have not yet been investigated. Based on culturomic and metagenomic methods, we analyzed the microbial diversity and function of a total of fourteen rhizosphere soil samples (collected from twelve plants in four farms of the Sinai desert), which may provide a valuable and meaningful guidance for the design of microbial inoculants. Results The results revealed a wide range of microbial taxa, including a high proportion of novel undescribed lineages. The composition of the rhizosphere microbial communities differed according to the sampling sites, despite similarities or differences in floristics. Whereas, the functional features of rhizosphere microbiomes were significantly similar in different sampling sites, although the microbial communities and the plant hosts themselves were different. Importantly, microorganisms involved in ecosystem functions are different between the sampling sites, for example nitrogen fixation was prevalent in all sample sites while microorganisms responsible for this process were different. Conclusion Here, we provide the first characterization of microbial communities and functions of rhizosphere soil from the Sinai desert farming systems and highlight its unexpectedly high diversity. This study provides evidence that the key microorganisms involved in ecosystem functions are different between sampling sites with different environment conditions, emphasizing the importance of the functional microbiomes of rhizosphere microbial communities. Furthermore, we suggest that microbial inoculants to be used in future agricultural production should select microorganisms that can be involved in plant-microorganism interactions and are already adapted to a similar environmental setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.