In order to study the influence of the cavity inclination angle bending performance of pneumatic soft actuators, two kinds of soft actuators were designed, one with a five-degree-angle cavity structure, and the other with a hybrid variable-degree-angle cavity structure. The bending performance of zero-degree-angle, five-degree-angle, and hybrid variable-degree-angle soft actuators was investigated by experimental methods and the ABAQUS finite element simulation method. The results show that, under seven different pressure loads, the mean absolute error between the experimental results and the numerical simulation results for the zero-degree-angle soft actuator was 0.926, for the five-degree-angle soft actuator it was 1.472, and for the hybrid variable-degree-angle soft actuator it was 1.22. When the pressure load changed from 4 kPa to 16 kPa, the five-degree-angle soft actuator had the largest range-of-angle variation, with the bending angle increasing 193.31%, from 26.92 degrees to 78.97 degrees. In the same longitudinal displacement, the five-degree-angle soft actuator had the largest lateral displacement variation, and the bending effect was the best compared with the zero-degree-angle soft actuator and the hybrid variable-degree-angle soft actuator. According to the experimental and numerical simulation results, with the same structural parameter design, the cavity tilt angle increases, which can increase the bending angle variation range and improve the bending performance of soft actuators.