The disposal of vegetable wastes in nature is harmful for marine habitats and biota. These types of waste are frequently used as fuel, generating polluting products, with undesired side effects on the environment. Therefore, it is essential to find better alternatives for the capitalisation of these waste products. Their diversified chemical composition can become a potential resource of high added value raw materials. The knowledge of the physicochemical properties of these wastes is therefore essential. The present work aimed for characterising the physicochemical properties of a plant residue belonging to the Asteraceae Family, collected from a vegetable market in Fez city, Morocco. The vegetal tissues were analysed by Scanning Electron Microscopy coupled with EDX, X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Inductively Coupled Plasma Atomic Emission Spectroscopy, and by Thermogravimetric/Differential thermal analyses. Other additional parameters were also measured, such as moisture, volatile matter, ash, and fixed carbon contents. Acidic and basic surface functions were evaluated by Boehm’s method, and pH points at zero charge were equally calculated. The results revealed a strong congruence between the morphological and structural properties of this plant. These vegetal wastes comprise a homogeneous fibrous and porous aspect both in surface and in profile, with a crystalline structure characteristic of cellulose I. A mass loss of 86.49% for leaves and 87.91% for stems in the temperature range of 100 °C to 700 °C, and pHpzc of 8.39 for leaves and 7.35 for stems were found. This study clarifies the similarities and differences between the chemical composition and morphological structure of these vegetal wastes, paving the way for future value-added applications in appropriate fields.