AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism that phosphorylates a wide range of proteins in order to maintain cellular homeostasis. AMPK consists of three subunits: α, β and γ. AMPKα and β are encoded by two genes, the γ subunit by three genes, all of which being expressed in a tissue-specific manner. If individual isoforms have different functions is not understood so far. Using RNA-Seq technology, we provide evidence that the loss of AMPKβ1 and AMPKβ2 lead to different gene expression profiles in human induced pluripotent stem cells (hiPSCs), indicating isoform-specific function. The knockout of AMPKβ2 was associated with a higher number of differentially regulated genes than the deletion of AMPKβ1, suggesting that AMPKβ2 has a more comprehensive impact on the transcriptome. Bioinformatics analysis identified cell differentiation as one biological function being specifically associated with AMPKβ2. Correspondingly, the two isoforms differentially affected lineage decision towards a cardiac cell fate. While the lack of PRKAB1 impacted differentiation into cardiomyocytes only at late stages of cardiac maturation, the availability of PRKAB2 was indispensable for mesoderm specification as shown by gene expression analysis and histochemical staining for cardiac lineage markers such as cTnT, GATA4, and NKX2.5. Ultimately, the lack of AMPKβ1 impairs, while deficiency of AMPKβ2 abrogates differentiation into cardiomyocytes. Finally, we demonstrate that AMPK affects cellular physiology by engaging in the regulation of hiPSC transcription in an isoform-specific manner, providing the basis for further investigations elucidating the role of dedicated AMPK subunits in the modulation of gene expression.