Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.