This paper proposes a class of algorithms for analyzing event count time series, based on state space modeling and Kalman filtering. While the dynamics of the state space model is kept Gaussian and linear, a nonlinear observation function is chosen. In order to estimate the states, an iterated extended Kalman filter is employed. Positive definiteness of covariance matrices is preserved by a square-root filtering approach, based on singular value decomposition. Non-negativity of the count data is ensured, either by an exponential observation function, or by a newly introduced “affinely distorted hyperbolic” observation function. The resulting algorithm is applied to time series of the daily number of seizures of drug-resistant epilepsy patients. This number may depend on dosages of simultaneously administered anti-epileptic drugs, their superposition effects, delay effects, and unknown factors, making the objective analysis of seizure counts time series arduous. For the purpose of validation, a simulation study is performed. The results of the time series analysis by state space modeling, using the dosages of the anti-epileptic drugs as external control inputs, provide a decision on the effect of the drugs in a particular patient, with respect to reducing or increasing the number of seizures.