Advances in Character Recognition 2012
DOI: 10.5772/52009
|View full text |Cite
|
Sign up to set email alerts
|

SVM Classifiers – Concepts and Applications to Character Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
3

Year Published

2014
2014
2023
2023

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 15 publications
(15 citation statements)
references
References 11 publications
0
12
0
3
Order By: Relevance
“…Typically, a convex quadratic programming (QP) [30] is solved to determine the SVM model, but in this paper, a least squares (LS) SVM [31] method was also used. Moreover, an alternative algorithm to solve the optimization problem in SVM, called sequential minimal optimization (SMO), has been applied [32].…”
Section: Methodsmentioning
confidence: 99%
“…Typically, a convex quadratic programming (QP) [30] is solved to determine the SVM model, but in this paper, a least squares (LS) SVM [31] method was also used. Moreover, an alternative algorithm to solve the optimization problem in SVM, called sequential minimal optimization (SMO), has been applied [32].…”
Section: Methodsmentioning
confidence: 99%
“…Metode klasifikasi Support Vector Machine (SVM) merupakan algoritma yang bekerja menggunakan pemetaan nonlinear untuk mengubah data pelatihan asli ke dimensi yang lebih tinggi (Thome, 2012). Dimensi baru akan mencari hyperplane untuk memisahkan secara linear dan pemetaaan nonlinear yang tepat ke dimensi yang cukup tinggi.…”
Section: Support Vector Machine (Svm)unclassified
“…Konsep dari SVM yaitu bekerja dengan baik pada kumpulan data dengan dimensi tinggi. SVM juga menggunakan teknik kernel yang memetakan data asli dari dimensi asalnya menjadi dimensi lain yang relatif lebih tinggi (Thome, 2012 Support Vector Machine adalah algoritma komputasi yang membangun hyperplane atau set hyperplanes dalam ruang dimensi tinggi atau tak terbatas. SVM banyak digunakan untuk klasifikasi, regresi, dan lainnya.…”
Section: Support Vector Machine (Svm)unclassified
“…SVM approach has some advantages compared to others classifiers. It is robust, accurate and very effective even in cases where the number of training samples is small [15].…”
Section: Voltage Data and Measurementmentioning
confidence: 99%