In this paper, an ultra-fast frequency shift-keying (FSK) modulation technique based on switched capacitor resonators is presented. It is demonstrated that switching a reactive component such as a capacitor, in a high-Q resonator with proper switching signal can preserve the stored energy and shift it to a different frequency. Switching boundaries are found by continuity of electric charge and magnetic flux. It is shown that if switching time is synchronous with zero crossing of the voltage signal across the switched capacitor, impulsive components can be avoided, and continuity of electric charge is satisfied without energy dissipation. We use this property to realize a fast binary frequency-shift keying (FSK) modulator with only a single RF source. In this technique, the modulation rate is independent of the resonator bandwidth and can be as high as the lower carrier frequency. Experimental results are presented to validate the simulations.