Atlantic sturgeon (Acipenser oxyrhynchus), which are bottom dwelling and migratory fish, experience environmental hypoxia in their natural environment. Atlantic sturgeon, acclimated to either 5 or 15°C, were subjected to a 1 h severe (<10 mm Hg) hypoxia challenge in order to document their physiological responses. We measured hematological parameters, including O(2) transport (hemoglobin, hematocrit), ionic (chloride, osmolality), and metabolic (glucose, lactate) variables under normoxic conditions (~160 mm Hg), immediately following a 1 h exposure to hypoxic water, and following a further 2 h of recovery from this challenge in normoxic water. In a second experiment, we assessed the opercular beat frequency before, during, and after hypoxic exposure. Hemoglobin concentrations and hematocrit were significantly different between fish held at 5°C vs. 15°C and also significantly different between normoxia prior to hypoxia and following recovery. Plasma lactate concentrations increased following hypoxia at both temperatures, indicative of an increase in anaerobic metabolism. In contrast, a significant increase in plasma glucose concentrations in response to hypoxia only occurred at 5°C, suggesting different fuel demands under different temperatures. Changes in opercular beat frequency (OBF) were dependent on temperature. At 5°C, OBF increased upon exposure to hypoxia, but returned to pre-exposure levels within 35 min for the remainder of the experiment. During hypoxia at 15°C, OBF increased very briefly, but then rapidly (within 20 min) decreased to levels below control values. Following a return to normoxia, OBF quickly increased to control levels. Overall, these findings suggest that Atlantic sturgeons are relatively tolerant to short-term and severe hypoxic stress, and the strategies for hypoxia tolerance may be temperature dependent.