Plasma biochemical analysis remains one of the established ways of monitoring captive marine mammal health. More recently, complementary plasma lipidomic analysis has proven to be a valid tool in disease diagnosis and prevention, with the potential to validate and complement common biochemical analysis, providing a more integrative approach. In this study, we thoroughly characterized the plasma polar lipid content of Tursiops truncatus, the most common cetacean species held under human care. Our results showed that phosphatidylcholine, lysophosphatidylcholine, and sphingomyelins (CerPCho) are the most represented phospholipid classes in T. truncatus plasma. Palmitic, oleic, and stearic acids are the major fatty acid (FA) present esterified to the plasma polar lipids of this species, although some n-3 species are also remarkably present, namely eicosapentaenoic and docosahexaenoic acids. The polar lipidome identified by HILIC LC-MS allowed identifying 304 different lipid species. These species belong to the phosphatidylcholine (103 lipid species), lysophosphatidylcholine (35), phosphatidylethanolamine (71), lysophosphatidylethanolamine (20), phosphatidylglycerol (13), lysophosphatidylglycerol (5), phosphatidylinositol (15), lysophosphatidylinositol (3), phosphatidylserine (6) lysophosphatidylserine (1), and sphimgomyelin (32) classes. This was the first time that the dolphin plasma phospholipid profile was characterized, providing a knowledge that will be important to further understand lipid metabolism and physiological regulation in small cetaceans. Furthermore, this study proved the practicability of the use of plasma lipid profiling for health assessment in marine mammals under human care.