We examine the equilibrium configurations of a nematic liquid crystal with an immersed body in two dimensions. A complex variables formulation provides a means for finding analytical solutions in the case of strong anchoring. Local tractions, forces and torques on the body are discussed in a general setting. For weak (finite) anchoring strengths, an effective boundary technique is proposed which is used to determine asymptotic solutions. The energy-minimizing locations of topological defects on the body surface are also discussed. A number of examples are provided, including circular and triangular bodies, and a Janus particle with hybrid anchoring conditions. Analogies to classical results in fluid dynamics are identified, including d'Alembert's paradox, Stokes’ paradox and the Kutta condition for circulation selection.