Switchable Adhesion of Hydrogels to Plant and Animal Tissues
Leah K. Borden,
Morine G. Nader,
Faraz A. Burni
et al.
Abstract:The ability to “switch on” adhesion between a thin hydrogel and a biological tissue can be useful in biomedical applications such as surgery. One way to accomplish this is with an electric field, a phenomenon termed electroadhesion (EA). Here, it is shown that cationic gels can be adhered by EA to tissues across all of biology. This includes tissues from animals, including humans and other mammals; birds; fish; reptiles (e.g., lizards); amphibians (e.g., frogs), and invertebrates (e.g., shrimp, worms). Gels ca… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.