Research investigations in the realm of micro-robotics often center around strategies addressing the multi-robot task allocation (MRTA) problem. Our contribution delves into the collaborative dynamics of micro-robots deployed in targeted hostile environments. Employing advanced algorithms, these robots play a crucial role in enhancing and streamlining operations within sensitive areas. We adopt a tailored GREEDY approach, strategically adjusting weight parameters in a multi-objective function that serves as a cost metric. The objective function, designed for optimization purposes, aggregates the cost functions of all agents involved. Our evaluation meticulously examines the MRTA efficiency for each micro-robot, considering dependencies on factors such as radio connectivity, available energy, and the absolute and relative availability of agents. The central focus is on validating the positive trend associated with an increasing number of agents constituting the cluster. Our methodology introduces a trio of micro-robots, unveiling a flexible strategy aimed at detecting individuals at risk in demanding environments. Each micro-robot within the cluster is equipped with logic that ensures compatibility and cooperation, enabling them to effectively execute assigned missions. The implementation of MRTA-based collaboration algorithms serves as an adaptive strategy, optimizing agents' mobility based on specific criteria related to the characteristics of the target site.<p class="JAMRISAbstract"> </p>