The most important direction in the development of fundamental and applied physics is the study of the properties of optical systems at nanoscales for creating optical and quantum computers, biosensors, single-photon sources for quantum informatics, DNA sequencing devices, detectors of various éelds, etc. In all these cases, nanosize light sources such as dye molecules, quantum dots (epitaxial or colloidal), color centers in crystals, and nanocontacts in metals are of utmost importance. In the nanoenvironment, the characteristics of these elementary quantum systems ì pumping rates, radiative and nonradiative decay rates, the local density of states, lifetimes, level shifts ì experience changes, which can be used to create nanosize light sources with the desired properties. Modern theoretical and experimental works on controlling the emission of elementary quantum systems with the help of plasmonic and dielectric nanostructures, metamaterials, and metamaterial nanoparticles are analyzed.