In the present paper, analytical formulae for the shear lift forces on nanocylinders moving in linear shear flows in the free molecule regime are derived on the basis of the gas kinetic theory. The model takes into account the intermolecular interactions between the nanocylinders and gas molecules, i.e., the non-rigid-body effect. It is shown that the resulting formulae are consistent with the previous theory in the limit of rigid-body collisions. The lift forces acting on carbon nanotubes and long-chain $n$-alkanes are evaluated as examples. It is found that the non-rigid-body effect is of great importance for small nanocylinders at low temperatures.