This study explores machine learning (ML) capabilities for predicting the shear strength of reinforced concrete deep beams (RCDBs). For this purpose, eight typical machine-learning models, i.e., symbolic regression (SR), XGBoost (XGB), CatBoost (CATB), random forest (RF), LightGBM, support vector regression (SVR), artificial neural networks (ANN), and Gaussian process regression (GPR) models, are selected and compared based on a database of 840 samples with 14 input features. The hyperparameter tuning of the introduced ML models is performed using the Bayesian optimization (BO) technique. The comparison results show that the CatBoost model is the most reliable and accurate ML model (R2 = 0.997 and 0.947 in the training and testing sets, respectively). In addition, simple and practical design expressions for RCDBs have been proposed based on the SR model with a physical meaning and acceptable accuracy (an average prediction-to-test ratio of 0.935 and a standard deviation of 0.198). Meanwhile, the shear strength predicted by ML models was then compared with classical mechanics-driven shear models, including two prominent practice codes (i.e., ACI318, EC2) and two previous mechanical models, which indicated that the ML approach is highly reliable and accurate over conventional methods. In addition, a reliability-based design was conducted on two ML models, and their reliability results were compared with those of two code standards. The findings revealed that the ML models demonstrate higher reliability compared to code standards.