In this paper, we apply decomposition to orbifolds with quantum symmetries to resolve anomalies. Briefly, it has been argued by e.g. Wang-Wen-Witten, Tachikawa that an anomalous orbifold can sometimes be resolved by enlarging the orbifold group so that the pullback of the anomaly to the larger orbifold group is trivial. For this procedure to resolve the anomaly, one must specify a set of phases in the larger orbifold, whose form is implicit in the extension construction. There are multiple choices of consistent phases, which give rise to physically distinct resolutions. We apply decomposition, and find that theories with enlarged orbifold groups are equivalent to (disjoint unions of copies of) orbifolds by nonanomalous subgroups of the original orbifold group. In effect, decomposition implies that enlarging the orbifold group is equivalent to making it smaller. We provide a general conjecture for such descriptions, which we check in a number of examples.