The nanostructure composed of nanomaterials and subwavelength units offers flexible design freedom and outstanding advantages over conventional devices. In this paper, a multifunctional nanostructure with phase-change material (PCM) is proposed to achieve tunable infrared detection, radiation cooling and infrared (IR)-laser compatible camouflage. The structure is very simple and is modified from the classic metal–dielectric–metal (MIM) multilayer film structure. We innovatively composed the top layer of metals with slits, and introduced a non-volatile PCM Ge2Sb2Te5 (GST) for selective absorption/radiation regulation. According to the simulation results, wide-angle and polarization-insensitive dual-band infrared detection is realized in the four-layer structure. The transformation from infrared detection to infrared stealth is realized in the five-layer structure, and laser stealth is realized in the atmospheric window by electromagnetic absorption. Moreover, better radiation cooling is realized in the non-atmospheric window. The proposed device can achieve more than a 50% laser absorption rate at 10.6 μm while ensuring an average infrared emissivity below 20%. Compared with previous works, our proposed multifunctional nanostructures can realize multiple applications with a compact structure only by changing the temperature. Such ultra-thin, integratable and multifunctional nanostructures have great application prospects extending to various fields such as electromagnetic shielding, optical communication and sensing.