We show how one can use the partialization functor to obtain several recently defined inverse monoids, and use this functor to define new objects, which we call the inverse braid-permutation monoids. A presentation for this monoid is obtained. Finally, we study some abstract properties of the partialization functor and its iterations. This leads to a categorification of a monoid of all order-preserving maps, and series of orthodox generalizations of the symmetric inverse semigroup.