One of the most important databases in the e-commerce is tile and ceramic database, for which no specific retrieval method has been provided so far. In this paper, a method is proposed for the content-based retrieval of digital images of tiles and ceramics databases. First, a database is created by photographing different tiles and ceramics on the market from different angles and directions, including 520 images. Then a query image and the database images are divided into nine equal sub-images and all are grouped based on their sub-images. Next, the selected color and texture features are extracted from the sub-images of the database images and query image, so, each image has a feature vector. The selected features are the minimum features that are required to reduce the amount of computations and information stored, as well as speed up the retrieval. Average precision is calculated for the similarity measure. Finally, comparing the query feature vector with the feature vectors of all database images leads to retrieval. According to the retrieving results by the proposed method, its accuracy and speed are improved by 16.55% and 23.88%, respectively, compared to the most similar methods.