Abstract. The Fermi-Pasta-Ulam (FPU) nonlinear oscillator chain has proved to be a seminal system for investigating problems in nonlinear dynamics. First proposed as a nonlinear system to elucidate the foundations of statistical mechanics, the initial lack of confirmation of the researchers expectations eventually led to a number of profound insights into the behavior of high-dimensional nonlinear systems. The initial numerical studies, proposed to demonstrate that energy placed in a single mode of the linearized chain would approach equipartition through nonlinear interactions, surprisingly showed recurrences. Although subsequent work showed that the origin of the recurrences is nonlinear resonance, the question of lack of equipartition remained. The attempt to understand the regularity bore fruit in a profound development in nonlinear dynamics: the birth of soliton theory. A parallel development, related to numerical observations that, at higher energies, equipartition among modes could be approached, was the understanding that the transition with increasing energy is due to resonance overlap. Further numerical investigations showed that time-scales were also important, with a transition between faster and slower evolution. This was explained in terms of mode overlap at higher energy and resonance overlap at lower energy. Numerical limitations to observing a very slow approach to equipartition and the problem of connecting high-dimensional Hamiltonian systems to lower dimensional studies of Arnold diffusion, which indicate transitions from exponentially slow diffusion along resonances to power-law diffusion across resonances, have been considered. Most of the work, both numerical and theoretical, started from low frequency (long wavelength) initial conditions. Coincident with developments to understand equipartition was another program to connect a statistical phenomenon to nonlinear dynamics, that of understanding classical heat conduction. The numerical studies were quite different, involving the excitation of a boundary oscillator with chaotic motion, rather than the excitation of