2022
DOI: 10.1002/mma.8622
|View full text |Cite
|
Sign up to set email alerts
|

Symmetric periodic solutions of symmetric Hamiltonians in 1 : 1 resonance

Abstract: The aim of this work is to prove analytically the existence of symmetric periodic solutions of the family of Hamiltonian systems with Hamiltonian function Hfalse(q1,q2,p1,p2false)=12false(q12+p12false)+12false(q22+p22false)+a0.1emq14+b0.1emq12q22+c0.1emq24$$ H\left({q}_1,{q}_2,{p}_1,{p}_2\right)=\frac{1}{2}\left({q}_1^2+{p}_1^2\right)+\frac{1}{2}\left({q}_2^2+{p}_2^2\right)+a\kern0.1em {q}_1^4+b\kern0.1em {q}_1^2{q… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?