SUMMARYA new family of locally conservative cell-centred flux-continuous schemes is presented for solving the porous media general-tensor pressure equation. A general geometry-permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control-volume distributed subcell flux-continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993;
Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994;Comput. Geosci. 1998; 2:259-290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive-definite (SPD) discretization matrix is obtained for the base member (q = 1) of the formulation. The physical-space schemes are shown to be non-symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non-symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical-space and subcell-space q-families of schemes. M-matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical-space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell-wise constant tensor schemes and that subcell tensor approximation using the control-volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested.