2004
DOI: 10.1007/bf03322869
|View full text |Cite
|
Sign up to set email alerts
|

Symmetric Sets With Midpoints and Algebraically Equivalent Theories

Abstract: Abstract. In this paper we consider an algebraic generalization of symmetric spaces of noncompact type to a more general class of symmetric structures equipped with midpoints. These symmetric structures are shown to have close relationships to and even categorical equivalences with a variety of other algebraic structures:transversal twisted subgroups of involutive groups, a special class of loops called B-loops, and gyrocommutative gyrogroups.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2008
2008
2021
2021

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 25 publications
0
6
0
1
Order By: Relevance
“…The second and the third hold from (G3) and (5), and the inequality holds from Proposition 6 with (12) and (13).…”
Section: Inequalitiesmentioning
confidence: 93%
See 2 more Smart Citations
“…The second and the third hold from (G3) and (5), and the inequality holds from Proposition 6 with (12) and (13).…”
Section: Inequalitiesmentioning
confidence: 93%
“…Since A. Ungar has first introduced the notion of gyrogroup and gyrovector space, many papers and consequences in algebra, hyperbolic geometry, quantum information, and the theory of special relativity have been appeared. Especially, (uniquely 2-divisible) gyrocommutative gyrogroups are equivalent to Bruck loop (B-loop or dyadic symmetric set) with the same operation [5,6]. In this paper we constructed a partial order on a gyrovector space, called a gyro-order, and showed several inequalities about gyrolines and cogyrolines.…”
Section: Closing Remarks and Acknowledgementmentioning
confidence: 99%
See 1 more Smart Citation
“…La raison pour laquelle les sous-symétrons ont été qualifiés de convexes dans Poizat 2018 est que ce sont les sous-ensembles dans lesquels deux points quelconques sont reliés par un sous-symétron abélien. C'est pour une raison semblable que les symétrons ont été qualifiés de dyadiques par Lawson & Lim 2004, car ce sont les espaces symétriques dans lesquels deux points quelconques sont reliés par une image du symétron libre à deux générateurs. Voir la Remarque 2, sur laquelle se fonde notre analyse locale des symétrons oméga-stables.…”
Section: Symétrons Abéliensunclassified
“…168]. A new term, (iii) "dyadic symset", which emerges from an interesting work of Lawson and Lim in [31], turns out, according to [31,Theorem 8.8], to be identical with a two-divisible, torsion-free, gyrocommutative gyrogroup [56, p. 71].…”
Section: Gyrogroups Are Loopsmentioning
confidence: 99%