Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently, Rowe and Aishwaryaprajna [FOGA 2019] introduced a simple majority vote technique that efficiently solves JUMP with large gaps, OneMax with large noise, and any monotone function with a polynomial-size image. In this paper, we identify a pathological condition for this algorithm: the presence of spin-flip symmetry in the problem instance. Spin-flip symmetry is the invariance of a pseudo-Boolean function to complementation. Many important combinatorial optimization problems admit objective functions that exhibit this pathology, such as graph problems, Ising models, and variants of propositional satisfiability. We prove that no population size exists that allows the majority vote technique to solve spin-flip symmetric functions of unitation with reasonable probability. To remedy this, we introduce a symmetry-breaking technique that allows the majority vote algorithm to overcome this issue for many landscapes. This technique requires only a minor modification to the original majority vote algorithm to force it to sample strings in {0, 1}n from a dimension n–1 hyperplane.We prove a sufficient condition for a spin-flip symmetric function to possess in order for the symmetry-breaking voting algorithm to succeed, and prove its efficiency on generalized TwoMax, a spin-flip symmetric variant of JUMP, and families of constructed 3-NAE-SAT and 2-XOR-SAT formulas. We also prove that the algorithm fails on the one-dimensional Ising model, and suggest different techniques for overcoming this. Finally, we present empirical results that explore the tightness of the runtime bounds and the performance of the technique on randomized satisfiability variants.
Recently, Rowe and Aishwaryaprajna [FOGA 2019] introduced a simple majority vote technique that efficiently solves JUMP with large gaps, OneMax with large noise, and any monotone function with a polynomial-size image. In this paper, we identify a pathological condition for this algorithm: the presence of spin-flip symmetry in the problem instance. Spin-flip symmetry is the invariance of a pseudo-Boolean function to complementation. Many important combinatorial optimization problems admit objective functions that exhibit this pathology, such as graph problems, Ising models, and variants of propositional satisfiability. We prove that no population size exists that allows the majority vote technique to solve spin-flip symmetric functions of unitation with reasonable probability. To remedy this, we introduce a symmetry-breaking technique that allows the majority vote algorithm to overcome this issue for many landscapes. This technique requires only a minor modification to the original majority vote algorithm to force it to sample strings in {0, 1}n from a dimension n–1 hyperplane.We prove a sufficient condition for a spin-flip symmetric function to possess in order for the symmetry-breaking voting algorithm to succeed, and prove its efficiency on generalized TwoMax, a spin-flip symmetric variant of JUMP, and families of constructed 3-NAE-SAT and 2-XOR-SAT formulas. We also prove that the algorithm fails on the one-dimensional Ising model, and suggest different techniques for overcoming this. Finally, we present empirical results that explore the tightness of the runtime bounds and the performance of the technique on randomized satisfiability variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.