Abstract:The two-dimensional shallow water equations and their semi-geostrophic approximation that arise in meteorology and oceanography are analysed from the point of view of symmetry groups theory. A complete classification of their associated classical symmetries, potential symmetries, variational symmetries and conservation laws is found. The semi-geostrophic equations are found to lack conservation of angular momentum. We also show how the particle relabelling symmetry can be used to rewrite the semi-geostrophic e… Show more
“…При цьому виникає низка фізичних та географічних параметрів, зокрема: форма початкового зміщення вільної поверхні, форми гра-ниць берегів та споруд, батиметрія дна, коефіцієнт шероховатості донної поверхні. Для розрахунку хвиль цунамі, як правило, використовують різні модифікації скінченно-різницевої схеми Мак-Кормака [6,7]. Ви-користання чисельних підходів призводить до низки проблем, пов'язаних з виникненням обчислювальних нестійкостей.…”
Section: аналіз літературних даних та постановка проблемиunclassified
“…При цьому виникає низка фізичних та географічних параметрів, зокрема: форма початкового зміщення вільної поверхні, форми гра-ниць берегів та споруд, батиметрія дна, коефіцієнт шероховатості донної поверхні. Для розрахунку хвиль цунамі, як правило, використовують різні модифікації скінченно-різницевої схеми Мак-Кормака [6,7]. Ви-користання чисельних підходів призводить до низки проблем, пов'язаних з виникненням обчислювальних нестійкостей.…”
Section: аналіз літературних даних та постановка проблемиunclassified
“…is conserved following particles (see Bîlǎ et al (2006) for a thorough analysis). The total energy of a blob of fluid that occupies D at t = 0 is…”
Section: Review Of Shallow-water Balanced Modelsmentioning
confidence: 99%
“…(This generalizes the conservation of a single 2-form in canonical Hamiltonian dynamics.) The MS structural conservation law can be exploited to analyse stability (see Bridges (1997) for details), but in the context of balanced models, we focus on the scalar conservation laws that arise from it, namely conservation of Lagrangian momentum, energy and potential vorticity. Another advantage of the MS structure is that when it is preserved by a discretization, the resulting finite-difference methods normally have extremely good stability properties (see Bridges & Reich (2006) and Ascher & McLachlan (2005) for details).…”
We transform near-local Hamiltonian balanced models (HBMs) describing nearly geostrophic fluid motion (with constant Coriolis parameter) into multi-symplectic (MS) systems. This allows us to determine conservation of Lagrangian momentum, energy and potential vorticity for Salmon's L 1 dynamics; a similar approach works for other near-local balanced models (such as the √ 3-model). The MS approach also enables us to determine a class of systems that have a contact structure similar to that of the semigeostrophic model. The contact structure yields a contact transformation that makes the problem of front formation tractable. The new class includes the first local model with a variable Coriolis parameter that preserves all of the most useful geometric features of the semigeostrophic model.
“…The system of equations written in a noninertial system of coordinates rotating together with the sphere at constant angular velocity Ω 0 has the form [3] Dv = w 2 cot θ + r 0 w cos θ + (1/4)r 2 0 sin θ cos θ − f 0 h θ , where D = ∂ t + v ∂ θ +(sin θ) −1 w ∂ ϕ is the total derivative over the surface of the sphere. Equations (1.1) are written in spherical coordinates: 0 < θ < π is the latitude, 0 ϕ < 2π is the longitude; v and w are the meridional and longitudinal velocity components, and h > 0 is the depth of the layer.…”
This paper studies a model of shallow water on a rotating attracting sphere that describes large-scale motions of the planetary atmospheric gases and World ocean water. The propagation of sound perturbations on an equilibrium state is studied. The system of equations for bicharacteristics is integrated in elliptic functions. A description of simple stationary waves is given. It is proved that there exist two types of solutions (supercritical and subcritical ) describing gas motion in a spherical zone, so that one of the boundary parallels is a source and the other is a sink. The obtained solutions are interpreted as large-scale circulating cells in the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.