1996
DOI: 10.1090/conm/196/02459
|View full text |Cite
|
Sign up to set email alerts
|

Symmetry in Finsler spaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

2000
2000
2024
2024

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(22 citation statements)
references
References 0 publications
0
20
0
2
Order By: Relevance
“…5 Circular orbits For a particle (2L = −c 2 ) on a circular orbit, the equations dr/dϕ = 0 and d 2 r/dϕ 2 = 0 must hold. By equation (25), these two conditions are equivalent to…”
Section: Equations Of Motionmentioning
confidence: 99%
See 1 more Smart Citation
“…5 Circular orbits For a particle (2L = −c 2 ) on a circular orbit, the equations dr/dϕ = 0 and d 2 r/dϕ 2 = 0 must hold. By equation (25), these two conditions are equivalent to…”
Section: Equations Of Motionmentioning
confidence: 99%
“…throughout. With this abbreviation, and L = 0, equation (25) can be rewritten in the following form.…”
Section: Effects On the Paths Of Light Raysmentioning
confidence: 99%
“…Spherically symmetric metrics in Finsler setting are first introduced by S. F. Rutz who studied the spherically symmetric Finsler metrics in 4-dimensional time-space and generalized the classic Birkhoff theorem in general relativity to the Finsler case [11]. The author obtained the general form of this kind of metrics to be F = uφ(r, s) in higher dimension, where u = |y|, r = |x| and s = x,y |y| and found many known examples belong to this type such as Riemannian space form, Funk metric, Berwald's example, Bryant's example [16].…”
mentioning
confidence: 99%
“…As métricas com curvatura de Landsberg e Douglas nula são chamadas métricas de Landsberg e Douglas, respectivamente e são generalizações das métricas de Berwald. Neste capítulo também introduzimos as métricas esfericamente simétricas que foram estudadas pela primeira vez por Rutz em [27]. Para finalizar o Capítulo 1, estudamos o método das curvas características para solucionar equações diferenciais parciais da forma ψ r (r, s) + ν(r, s)ψ s (r, s) = P (r, s, ψ(r, s)), onde ν(r, s) e P (r, s, ψ(r, s)) são diferenciáveis.…”
Section: Tese ( Dou T O R Ado ) -Un I Ve R S I Dade De Br As í L I a unclassified
“…são da seguinte forma: 27) onde Γ i jk são funções de x ∈ M e P uma função de (x, y) ∈ T M que satisfaz a seguinte propriedade de homogeneidade…”
Section: Métricas De Douglasunclassified