Abstract. We give a unified approach to analysing, for each positive integer s, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally s-arc transitive graphs. A graph is in the class if it is connected and if, for each vertex v, the subgroup of automorphisms fixing v acts transitively on the set of vertices at distance i from v, for each i from 1 to s. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s ≥ 2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph, or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex orbits, or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups.