2001
DOI: 10.1016/s0378-4754(00)00300-1
|View full text |Cite
|
Sign up to set email alerts
|

Symplectic computation of solitary waves for general Sine–Gordon equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2006
2006
2015
2015

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 13 publications
0
3
0
1
Order By: Relevance
“…一维 Sine-Gordon 方程是重要的非线性数学物理方程,可以用来描述流体力学、气象学、场论等领域 很多物理现象。例如,传播中的磁通量子两个超导体之间的约瑟夫逊结 [1],严格的钟摆的运动在拉伸线 [2]、固体物理、非线性光学、流体运动的稳定性。人们对此已经用一些方法作了研究。例如,显式有限 差分格式和隐格式离散能量守恒方法 [3]。Strauss and Vázquez [4],使用经典的有限差分格式 [5] [6],计算 了 Klein-Gordon 方程。 而 [7]的作者提出了一个使用基函数的方法。 Ramos [8]使用五点隐式有限差分方法。 [9]提出了一种通用的解决 Sine-Gordon 方程的辛方法。Batiha et al [ ,0 , ,0 , ,…”
Section: 引言unclassified
“…一维 Sine-Gordon 方程是重要的非线性数学物理方程,可以用来描述流体力学、气象学、场论等领域 很多物理现象。例如,传播中的磁通量子两个超导体之间的约瑟夫逊结 [1],严格的钟摆的运动在拉伸线 [2]、固体物理、非线性光学、流体运动的稳定性。人们对此已经用一些方法作了研究。例如,显式有限 差分格式和隐格式离散能量守恒方法 [3]。Strauss and Vázquez [4],使用经典的有限差分格式 [5] [6],计算 了 Klein-Gordon 方程。 而 [7]的作者提出了一个使用基函数的方法。 Ramos [8]使用五点隐式有限差分方法。 [9]提出了一种通用的解决 Sine-Gordon 方程的辛方法。Batiha et al [ ,0 , ,0 , ,…”
Section: 引言unclassified
“…In this example, we consider the motion of double kinks in the SG equation. The analytic form of the double kinks in the SG equation can be expressed as [13]:…”
Section: Problemmentioning
confidence: 99%
“…Wei [12] investigated the utility of a discrete singular convolution algorithm for the integration of the SG equation. Lu [13] presented a class of symplectic schemes for the computation of solutions of the general SG systems. Wazwaz employed the tanh method and a variable separated ODE method for solving the double SG equation [1] and the reliable tanh method to handle the generalized SG and the generalized sinh−Gordon equations [14].…”
Section: Introductionmentioning
confidence: 99%
“…[3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22]). Specifically, readers can refer to [8,17,19] for finite difference schemes, [4,5] for finite element methods, [11,20,21] for energy conserving schemes, and [16,18] for symplectic algorithms. Recently, some other methods are applied to solving the equation such as the modified Adomian decomposition method (cf.…”
Section: Introductionmentioning
confidence: 99%