Ketosis is a common nutritional, metabolic disease during the perinatal period in dairy cows characterized by elevated blood β-hydroxybutyrate (BHBA). In this study, RNA sequencing (RNA-seq) was performed to investigate adaptive changes in adipose tissue during the perinatal period of dairy cows. Blood and tailhead subcutaneous white adipose tissue (sWAT) were obtained from ketotic cows (Ket = 8, BHBA ≥ 1.4 mmol/L) and non-ketotic cows (Nket = 6, BHBA < 1.4 mmol/L) 21 d pre-partum and 10 d post-partum. Compared with pre-partum, decreased lipid synthesis due to down-regulation of PCK1 may be in a strong association with clinical ketosis. Simultaneously, PCK2 was downregulated in the Ket postnatally compared to its expression prenatally, and the expression of PCK2 was 2.7~4.2 times higher than that of PCK1, implying a more severe lipid storage impairment in the Ket. Moreover, compared to pre-partum, the upregulated differentially expressed genes post-partum in the Ket were enriched in the inflammatory response biological process. The higher expression of TNC (tenascin C) in the post-partum Ket relative to the Nket suggested that the adipose tissue of ketotic cows might also be accompanied by tissue fibrosis. Notably, pre-partum CD209 was higher in the Ket than in the Nket, which might be used as a candidate marker for the pre-partum prediction of ketosis. Combined with published gene expression traits, these results suggested that inflammation leads to a more widespread downregulation of the lipid synthesis gene network in adipose tissue in ketotic cows. Additionally, sWAT in post-partum cows with ketosis might also be accompanied by tissue fibrosis which could make the treatment of ketosis more difficult.