In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights. We used a dataset consisting of individuals who were tested for COVID-19 during the early stages of the pandemic in 2020. The dataset included self-reported symptoms and test results from a wide demographic, and our goal was to identify the most important symptoms that could help predict COVID-19 infection accurately. By applying interpretability techniques to both machine learning and deep learning models, we aimed to improve understanding of symptomatology and enhance early detection of COVID-19 cases. Notably, even though less than 1% of our cohort reported having a sore throat, this symptom emerged as a significant indicator of active COVID-19 infection, appearing 7 out of 9 times in the top four most important features across all methodologies. This suggests its potential as an early symptom marker. Studies have shown that individuals reporting sore throat may have a compromised immune system, where antibody generation is not functioning correctly. This aligns with our data, which indicates that 5% of patients with sore throats required hospitalization. Our analysis also revealed a concerning trend of diminished immune response post-COVID infection, increasing the likelihood of severe cases requiring hospitalization. This finding underscores the importance of monitoring patients post-recovery for potential complications and tailoring medical interventions accordingly. Our study also raises critical questions about the efficacy of COVID-19 vaccines in individuals presenting with sore throat as a symptom. The results suggest that booster shots might be necessary for this population to ensure adequate immunity, given the observed immune response patterns. The proposed method not only enhances our understanding of COVID-19 symptomatology but also demonstrates its broader utility in medical outlier detection. This research contributes valuable insights to ongoing efforts in creating interpretable models for COVID-19 management and vaccine optimization strategies. By leveraging feature importance and interpretability, these models empower physicians, healthcare workers, and researchers to understand complex relationships within medical data, facilitating more informed decision-making for patient care and public health initiatives.