In the present study, we used the N terminus (amino acids 1ϳ160) of type VI adenylyl cyclase (ACVI) as bait to screen a mouse brain cDNA library and identified Snapin as a novel ACVI-interacting molecule. Snapin is a binding protein of SNAP25, a component of the SNARE complex. Co-immunoprecipitation analyses confirmed the interaction between Snapin and full-length ACVI. Mutational analysis revealed that the interaction domains of ACVI and Snapin were located within amino acids 1ϳ86 of ACVI and 33-51 of Snapin, respectively. Co-localization of ACVI and Snapin was observed in primary hippocampal neurons. Moreover, expression of Snapin specifically eliminated protein kinase C (PKC)-mediated suppression of ACVI, but not that of cAMP-dependent protein kinase (PKA) or calcium. Mutation of the potential PKC and PKA phosphorylation sites of Snapin did not affect the ability of Snapin to reverse the PKC inhibitory effect on ACVI. Phosphorylation of Snapin by PKC or PKA therefore might not be crucial for Snapin action on ACVI. In contrast, Snapin ⌬33-51 , which harbors an internal deletion of amino acids 33-51 did not affect PKC-mediated inhibition of ACVI, supporting that amino acids 33-51 of Snapin comprises the ACVI-interacting region. Consistently, Snapin exerted no effect on PKC-mediated inhibition of an ACVI mutant (ACVI-⌬A87), which lacked the Snapin-interacting region (amino acids 1-86). Snapin thus reverses its action via direct interaction with the N terminus of ACVI. Collectively, we demonstrate herein that in addition to its association with the SNARE complex, Snapin also functions as a regulator of an important cAMP synthesis enzyme in the brain.
Adenylyl cyclases (ACs)1 are a family of enzymes that produce cyclic AMP (cAMP) from ATP upon extracellular stimulation. To date, at least 9 membrane-bound ACs have been isolated and characterized (1). These enzymes are capable of integrating positive and negative signals that act directly through stimulation of G protein-coupled receptors (GPCRs) or indirectly via intracellular signaling molecules in isozyme-specific patterns. In addition, the regulatory properties and expression patterns of different AC isoforms greatly diverge and may account for the distinctive cell-and tissue-specific responsiveness of ACs. Recently, several different proteins, including RGS2 and the protein associated with Myc (PAM), have been shown to interact and modulate activity of different AC isozymes (2, 3), adding additional dimensions to the isozymespecific regulation of the AC superfamily.Except for the newly identified soluble AC, all membranebound AC members share a primary structure consisting of 12 transmembrane regions and 3 large cytoplasmic domains (N, C1a/b, and C2). The C1a and C2 domains, which form the catalytic core complex, are highly conserved and are homologous to each other. The N-terminal domains of ACs, in contrast, are variable among ACs, and have been demonstrated to play mostly regulatory roles (4, 5). Among the AC isozymes, ACVI is of particular interest, because...