Brain energy stress leads to neuronal hyperexcitability followed by a rapid loss of function and cell death. In contrast, the frog brain switches into a state of extreme metabolic resilience that allows them to maintain motor function during hypoxia as they emerge from hibernation. NMDA receptors (NMDARs) are Ca2+-permeable glutamate receptors that typically drive the loss of homeostasis during hypoxia. Therefore, we hypothesized that hibernation leads to plasticity that reduces the role of NMDARs within neural networks to improve function during energy stress. To test this, we assessed a circuit with a large involvement of NMDAR synapses, the brainstem respiratory network of female bullfrogs,Lithobates catesbieanus. Contrary to our expectations, hibernation did not alter the role of NMDARs in generating network output, nor did it affect the amplitude, kinetics, and hypoxia sensitivity of NMDAR currents. Instead, hibernation strongly reduced NMDAR Ca2+permeability and enhanced desensitization during repetitive stimulation, with shifts in mRNA copy number for NMDAR subunits that modify receptor function. Under severe hypoxia, the normal NMDAR profile caused network hyperexcitability within minutes, which was mitigated by blocking NMDARs. After hibernation, the modified complement of NMDARs protected against hyperexcitability, as disordered output did not occur for at least one hour in hypoxia. These findings uncover state-dependence in the plasticity of NMDARs, whereby distinct changes to receptor function improve neural performance during energy stress without interfering with its normal role during healthy activity.