This paper presents an investigation of stability and Hopf bifurcation of a synaptically coupled nonidentical HR model with two time delays. By regarding the half of the sum of two delays as a parameter, we first consider the existence of local Hopf bifurcations, and then derive explicit formulas for determining the direction of the Hopf bifurcations and the stability of bifurcating periodic solutions, using the normal form method and center manifold theory. Finally, numerical simulations are carried out for supporting theoretical analysis results.