We consider noisy communications and storage systems that are hampered by varying offset of unknown magnitude such as low-frequency signals of unknown amplitude added to the sent signal. We study and analyze a new detection method whose error performance is independent of both unknown base offset and offset's slew rate. The new method requires, for a codeword length n ≥ 12, less than 1.5 dB more noise margin than Euclidean distance detection. The relationship with constrained codes based on mass-centered codewords and the new detection method is discussed.