The role of intermediaries in the synchronization of small groups of light controlled oscillators (LCO) is addressed. A single LCO is a two-time-scale phase oscillator. When pulse-coupling two LCOs, the synchronization time decreases monotonously as the coupling strength increases, independent of the initial conditions and frequency detuning. In this work we study numerically the effects that a third LCO induces to the collective behavior of the system. We analyze the new system by dealing with directed heterogeneous couplings among the units. We report a novel and robust phenomenon, absent when coupling two LCOs, which consists of a discontinuous relationship between the synchronization time and coupling strength or initial conditions. The mechanism responsible for the appearance of such discontinuities is discussed.