“…(1) developmental studies of rhythm that are useful in understanding whether rhythm perception and production involve critical acquisition periods, or instead result mostly from enculturation during the whole lifespan (Hannon and Trehub, 2005), (2) comparative and cross-cultural studies of rhythm that serve to explain whether musical enculturation or exposure to specific languages can affect which specific rhythmic patterns can be produced/perceived and how frequently (Greenberg et al, 1978;Rzeszutek et al, 2012), (3) comparisons of rhythm processing in music and speech, at both behavioral and neural levels that help understanding whether common music-speech networks exist and similar behavioral patterns can be observed when humans engage in music and speech production, (4) evidence and comparison of rhythm processing across modalities and domains that are used to understand whether, for instance, metrical expectation in speech is strictly bound to the speech domain or instead recruits the same capacities for metricality available in music, or even in dance and vision (Iversen et al, 2015), (5) studies of rhythm in interaction and context (Yu and Tomonaga, 2015), explaining how social, affective, and other factors affect the emergence of rhythmic patterns, (6) archaeological findings trying to reconstruct rhythmrelated behavior and cognition in our early hominid ancestors (Morley, 2003), (7) mathematical and computational models (e.g., connectionist, symbolic) of the mechanisms underlying perception and production of rhythmic behavior (Desain and Honing, 1989, 1991, 2003, (8) mathematical and computational models of rhythmic capacities as evolved behaviors (Miranda et al, 2003) in line with a long tradition in evolutionary and theoretical biology, (9) evidence of spontaneous rhythmic behavior in other animals (Fuhrmann et al, 2014;Ravignani et al, 2014a) showing how similar rhythmic traits can evolve via similar pressures in phylogenetically distant species, (10) controlled experiments in non-human animals (Cook et al, 2013) probing the potential for producing/perceiving rhythm (even though these are not usually part of these species' natural behavior); these experiments can show the existence of basic, evolutionary conserved cognitive processes that may have been exapted in humans for rhythmic purposes.…”