In a recent work by three of the authors, in order to enforce synchronization for scalar heterogeneous multi-agent systems with some useful characteristics, a node-wise funnel coupling law was proposed. The emergent dynamics, to which each of the agents synchronizes, was characterized and it was studied how networks can be synthesized which exhibit these emergent dynamics. The advantage of this synthesis is its suitability for plug-and-play operation. However, the aforementioned emergent dynamics under node-wise funnel coupling are determined by an algebraic equation which does not admit an explicit solution in general, and even its pointwise solution proves rather difficult. Furthermore, the contractivity assumption on the emergent dynamics, required to establish the synchronization, is hard to be checked without solving the algebraic equation. To resolve these drawbacks, in the present paper we present a new funnel coupling law that uses edge-wise output differences. Under this novel coupling the benign properties of node-wise funnel coupling are retained, but the emergent dynamics are given explicitly by the blended dynamics of the multi-agent system, which already proved an advantageous tool in the analysis and design of such networks. Additionally, our results are not restricted to scalar systems and treat the case that neighboring agents only communicate their output information, and not their complete state.