Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Prior reports demonstrate that simultaneity is judged less precisely in the right visual field (RVF) than in the left visual field (LVF). The present psychophysical study was conducted to provide new information about why and when (i.e., the visual information stage at which) RVF deficits arise in simultaneity judgments. In Experiment 1, participants judged either the simultaneity or the relative spatial frequency of Gabor targets in the right or left hemifield while distractors were randomly absent or present. When attention was not needed to exclude distractors, signal detection theory analyses revealed an RVF simultaneity deficit with an error pattern that implicates low RVF temporal acuity, not excessive RVF neural noise. Adding attentionally demanding distractors introduced a separate, significant RVF simultaneity deficit with error patterns that implicate the inappropriate integration of temporal asynchronies from distractor locations. Neither the distractor-independent RVF acuity deficit nor the distractor-induced RVF excessive spatial integration occurred for spatial frequency discrimination at the same retinal locations. In Experiment 2, a perceptual learning procedure significantly improved RVF simultaneity judgments. The learning was task-specific but generalized to the untrained (left) visual field and to novel retinal locations. This observation implicates the simultaneity decision as the visual information stage that sets the limit on performance.
Prior reports demonstrate that simultaneity is judged less precisely in the right visual field (RVF) than in the left visual field (LVF). The present psychophysical study was conducted to provide new information about why and when (i.e., the visual information stage at which) RVF deficits arise in simultaneity judgments. In Experiment 1, participants judged either the simultaneity or the relative spatial frequency of Gabor targets in the right or left hemifield while distractors were randomly absent or present. When attention was not needed to exclude distractors, signal detection theory analyses revealed an RVF simultaneity deficit with an error pattern that implicates low RVF temporal acuity, not excessive RVF neural noise. Adding attentionally demanding distractors introduced a separate, significant RVF simultaneity deficit with error patterns that implicate the inappropriate integration of temporal asynchronies from distractor locations. Neither the distractor-independent RVF acuity deficit nor the distractor-induced RVF excessive spatial integration occurred for spatial frequency discrimination at the same retinal locations. In Experiment 2, a perceptual learning procedure significantly improved RVF simultaneity judgments. The learning was task-specific but generalized to the untrained (left) visual field and to novel retinal locations. This observation implicates the simultaneity decision as the visual information stage that sets the limit on performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.