Aiming at the problem that the time-frequency image of bearing fault characteristics is relatively weak and difficult to identify. This paper presents a time-frequency analysis method of local maximum synchrosqueezing transform based on image enhancement. Firstly, the instantaneous frequency of the collected vibration signal is obtained through local maximum synchrosqueezing transformation. Secondly, a local histogram cropping equalization image enhancement algorithm is proposed, which is used to obtain time-frequency images with clearer textures. Then, in order to extract fault features from the enhanced instantaneous frequency (IF) image, A new neural network is proposed. The network consists of Multi-size convolution kernel module, Dual-channel pooling layer and Cross Stage Partial Network (MDCNet). Finally, the fault signal was collected on the bearing fault test bench for prediction, and the accuracy rate reached 99.7%. And compared with AlexNet, VGG-16, Resnet and other methods. The results show that the method can meet the needs of actual engineering.INDEX TERMS Fault diagnosis, image enhancement, instantaneous frequency.