The purpose of this study is to examine the effect of wood aging on the mechanical behavior at the cell-wall level. Synchrotron X-ray diffraction (XRD) measurements were performed to investigate the mechanical behavior of cellulose in the S2 layer of aged wood from a 250-year-old attic cabin beam. XRD measurements under uniaxial loading were performed on the cellulose (004) plane; the results were compared with those of recent wood. The cellulose in aged wood exhibited a delayed response to both tensile and compressive loading compared with recent wood. Under compressive loading, cellulose showed an increase in maximum strain and a significant increase in the variation of cellulose orientation angle, indicating that it may exhibit buckling-like meandering behavior. These results could be explained based on the decrease in hemicellulose content in the cell wall due to wood aging. In other words, the results suggested that an amorphous material in the cell wall affected the mechanical behavior of wood at the cell-wall level.