Monolithic aerogels can be easily obtained by drying physical gels formed by linear uncross-linked polymers. Preparation methods, structure, and properties of these physically cross-linked polymeric aerogels are reviewed, with particular emphasis to those whose cross-linking knots are crystallites and, more in particular, crystallites exhibiting nanoporous-crystalline forms. The latter aerogels present beside disordered amorphous micropores (typical of all aerogels) also all identical nanopores of the crystalline phases. Their outstanding guest transport properties combined with low material cost, robustness, durability, and ease of handling and recycle make these aerogels suitable for applications in chemical separations, purification, and storage as well as in biomedicine. Scientific, technological, and industrial perspectives for monolithic nanoporous-crystalline polymeric aerogels are also discussed.