With the gradual depletion of shallow oil and gas, deep oil and gas has become the focus of development. However, deep formations generally face the challenge of high-temperature and high-salinity, and drilling fluid agents are prone to failure, leading to drilling fluid intrusion into the formation that can cause serious drilling accidents such as well bore collapse. For this, a styrene-based nano-microsphere (SSD) modified with amphoteric ions was developed, with a particle size of 228 nm which could resist temperatures up to 200 °C and sodium chloride (NaCl) up to saturation. SSD has significant salt-responsive properties and its aqueous dispersion becomes transparent with increasing salinity. The SSD provided superior plugging performance in solutions containing NaCl, with a core plugging efficiency of 95.2%, and it was significantly better than the anion-modified microspheres. In addition, in drilling fluids under high temperature and high-salinity conditions, the SSD promotes particle gradation of drilling fluids and improves the zeta potential through its own plugging and synergistic effect with clay, which significantly improves the comprehensive performance of drilling fluids, such as stability, rheological performance, and filtration reduction performance. The development of SSD provides a new idea for research of high-temperature and high-salinity-resistant drilling fluid agents.