Colorectal cancer (CRC) ranks as the third most prevalent global malignancy, marked by significant metastasis and post-surgical recurrence, posing formidable challenges to treatment efficacy. The integration of oligonucleotides with chemotherapeutic drugs emerges as a promising strategy for synergistic CRC therapy. The nanoformulation, lipid nanoparticle (LNP), presents the capability to achieve co-delivery of oligonucleotides and chemotherapeutic drugs for cancer therapy. In this study, we constructed lipid nanoparticles, termed as LNP-I-V by microfluidics to co-deliver oligonucleotides miR159 mimics (VDX05001SI) and irinotecan (IRT), demonstrating effective treatment of CRC both in vitro and in vivo. The LNP-I-V exhibited a particle size of 118.67 ± 1.27 nm, ensuring excellent stability and targeting delivery to tumor tissues, where it was internalized and escaped from the endosome with a pH-sensitive profile. Ultimately, LNP-I-V significantly inhibited CRC growth, extended the survival of tumor-bearing mice, and displayed favorable safety profiles. Thus, LNP-I-V held promise as an innovative platform to combine gene therapy and chemotherapy for improving CRC treatment.