Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
To supply information concerning the application of poly-glutamic acid (PGA) in the drought-resistant cultivation of red sage (Salvia miltiorrhiza), we investigated the role of PGA in regulating the physiological characteristics, plant growth, and the accumulation of the main medical components in the root under water shortage. The findings showed that different levels of water shortage (WS) all suppressed the photosynthetic function by reducing the net photosynthetic rate (Pn), Soil and plant analyzer development (SPAD) value, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and actual photochemical efficiency of PSII (Y(II)), as well as increasing non-photochemical quenching (qN). Compared with WS, PGA plus WS enhanced the photosynthetic function by reducing qN and increasing the other indicators above. For water metabolism, WS increased stomatal limit value (Ls) and water use efficiency (WUE), but decreased transpiration rate (Tr) and stomatal conductance (Gs). Compared with WS, PGA plus WS decreased Ls and increased Tr, Gs, and WUE. Meanwhile, WS enhanced the antioxidant capacity by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. However, WS increased malondialdehyde (MDA) content. Compared with WS, PGA plus WS enhanced the above antioxidant enzymes. In this way, PGA reduced MDA content and improved the antioxidant capacity under WS. In addition, WS decreased the shoot and root biomass, but increased the root/shoot ratio. Compared with WS, PGA plus WS further increased the root/shoot ratio and shoot and root biomass. For medical ingredients, WS decreased the yield of rosmarinic acid (RosA) and salvianolic acid B (SalB), but increased the yield of dihydrotanshinone (DHT), cryptotanshinone (CTS), tanshinone I (Tan I), and tanshinone ⅡA (Tan ⅡA). Compared with WS, PGA plus WS increased the yield of these medical ingredients. Our findings clearly suggested that PGA application was an effective method to enhance sage drought tolerance and the yield of the main medical ingredients in sage root. This provides useful information for its application in sage production under WS.
To supply information concerning the application of poly-glutamic acid (PGA) in the drought-resistant cultivation of red sage (Salvia miltiorrhiza), we investigated the role of PGA in regulating the physiological characteristics, plant growth, and the accumulation of the main medical components in the root under water shortage. The findings showed that different levels of water shortage (WS) all suppressed the photosynthetic function by reducing the net photosynthetic rate (Pn), Soil and plant analyzer development (SPAD) value, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and actual photochemical efficiency of PSII (Y(II)), as well as increasing non-photochemical quenching (qN). Compared with WS, PGA plus WS enhanced the photosynthetic function by reducing qN and increasing the other indicators above. For water metabolism, WS increased stomatal limit value (Ls) and water use efficiency (WUE), but decreased transpiration rate (Tr) and stomatal conductance (Gs). Compared with WS, PGA plus WS decreased Ls and increased Tr, Gs, and WUE. Meanwhile, WS enhanced the antioxidant capacity by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. However, WS increased malondialdehyde (MDA) content. Compared with WS, PGA plus WS enhanced the above antioxidant enzymes. In this way, PGA reduced MDA content and improved the antioxidant capacity under WS. In addition, WS decreased the shoot and root biomass, but increased the root/shoot ratio. Compared with WS, PGA plus WS further increased the root/shoot ratio and shoot and root biomass. For medical ingredients, WS decreased the yield of rosmarinic acid (RosA) and salvianolic acid B (SalB), but increased the yield of dihydrotanshinone (DHT), cryptotanshinone (CTS), tanshinone I (Tan I), and tanshinone ⅡA (Tan ⅡA). Compared with WS, PGA plus WS increased the yield of these medical ingredients. Our findings clearly suggested that PGA application was an effective method to enhance sage drought tolerance and the yield of the main medical ingredients in sage root. This provides useful information for its application in sage production under WS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.