Development of artificial soft materials that have good mechanical performances and autonomous healing ability is a longstanding pursuit but remains challenging. This work reports a kind of highly flexible, tough, and self‐healable poly(acrylic acid)/Fe(III) (PAA/Fe(III)) hydrogels. The hydrogels are dually cross‐linked by triblock copolymer micelles and ionic interaction between Fe(III) and carboxyl groups. Due to the coexistence of these two cross‐linking points, the resulting PAA/Fe(III) hydrogels are tough and can be flexibly stretched, bent, knotted, and twisted. The hydrogels can withstand a deformation of 600% and an ultimate stress as high as 250 kPa. Moreover, the dynamic ionic interaction also endows the hydrogels self‐healing properties. By varying the ratio of Fe(III)/AA, a compromised healing efficiency of 73% and an ultimate stress of 200 kPa are obtained.